
Real-time excutive for 805 H y p e single-chip microcomputers
Author
Date :
Address :

: 0y vind Teig.
2 6 . 0 9 . 8 8
Autromca A/S

: P.O.Box 3 0 1 0 , N 7001
: Trondheim, Norway
: Telephone: 47 7 918080

RX51 scheduler. Page 2

Abstract.

The paper describes a real- t ime executive (rx or scheduler)
designed for the 8 0 5 1 - or 8 0 5 2 - type microcomputers. Up to 8
concurrent processes (or tasks) may be def ined.

A synchronizing primitive consisting of a protected mailbox is
def ined.

Shared resources may be pro tec ted, this is done with an implicit
concept. The concept is the scheduling algorithm that does not
reschedule any process when a subroutine is running. I f the shared
resource is accessed at subrout ine- level on ly , i t is by def ini t ion
protected. This scheme removes the necessesity of semaphores.
Buffers or 10 or subrotines may be protected just be moving to
subrout ine- leve l .

Without making reentrant code, a l l subroutines s t i l l wi l l behave
as if they were reentrant because of the scheduling algorithm.
Reentrant in this context means that the programmer may ca l l the
same procedures from more than one process, not that the procedure
wi l l be able to ca l l i t se l f . Passing of parameters to such routines
may be done from subrotine l e v e l , so that the parameters are
properly protected,

A t imeout- or wai t - mechanism is implemented. The wait-mechanism
may be of type "reschedule after nnn mS" , or "reschedule if not
mail or interrupt received within nnn mS" .

The scheduler may run on a single-chip 8051 with 128 bytes
internal ram or an 805 2 - compatible microcomputer with 256 bytes
internal ram. I t does not use external ram. The scheduler and i ts
associated routines have a code size of approximately 1400 bytes.

The scheduler is written in the In te l PL/M-51 language, and thus
may be recompiled at any time by the user. The PL/M-51 syntax is
used to some extent in the paper. The figures given in the text is
from a system realized with an 80 5 2 - compatible single-chip
microcomputer running at 12 MHz with 4 processes. The system
neither has external data storage nor external program storage.
With 4 processes def ined, the rx uses approximately 75 bytes
internal ram. The system easily handles one serial channel at 9600
baud and a system timer interrupt every 2 mS. The system s t i l l is
idle for 50% of the time. The scheduler switching time is
approximately 2 50 microseconds with a 12 MHz c rys ta l .

The basic philosophy of the scheduler has been tested for several
years with a similar scheduler designed for the In te l 8035
microcomputer, now running in some 1300 delivered systems.

\

RX51 scheduler. Page 3

Scheduler procedures and functions.

The user has to learn how to use a small number of procedure- and
funct ion- ca l ls . The procedure calls are:

cal l wait returns to call ing process.

cal l rx returns to call ing process after being rescheduled.

The function calls are the fo l lowing:

Mailbox_reserved returns to call ing process,
Mailbox_fil led returns to call ing process.
Mailbox_emptied returns to call ing process.

Prior to a l l the 5 calls above, the global interrupt enable f lag
must be turned o f f . This is done with the "disable" statement.

The global interrupt enable f lag is tested within a l l the functions
described above and also within the "wai t" procedure, A crash
exception is done if the f lag is enabled at those po in ts .

When a process is rescheduled at the line following the " ca l l rx"
statement, the global interrupt enable f lag is always t r u e , turning
the global interrupt enable on . The rx scheduler is the only
procedure or function that modifies this f l a g .

Initializing phase.

The real-t ime executive star ts a l l the defined processes using the
wait-mechanism. The wait-mechanism uses one 8 -b i t software counter
for each process. In the ini t ia l iz ing phase each wait-counter is set
to any non-zero value, but at least one must be 1 to count to
zero on the f i rs t timer in te r rup t .

The (s ta r t ing) address of each process is referenced as EXTERNAL to
the scheduler, which uses the start ing address when scheduling a
process. Later on , when a process has been running at least once,
i t wi l l be rescheduled (when necessary) at the statement after the
last running inst ruct ion.

RX51 scheduler. Page 4

Before any process is allowed to run , the system timer is
ini t ial ized to count to overflow in 2 . 0 0 mS. This is done just
after power-up and the interrupts are not yet enabled. Then the
interrupt pr ior i ty register is set to give a l l interrupts " low"
p r i o r i t y , meaning that the interrupts are pr ior i t ized in descending
order with external interrupt 0 to be the highest and timer 0 the
second highest p r i o r i t y . When the scheduler ini t ia l iz ing phase is
over, the timer interrupt and the global interrupt enable is turned
on.

After the scheduler ini t ial iz ing phase i t enters a loop where i t waits
for a timer 0 in te r rup t . I f the interrupt is not received within the
specified time, the loop wi l l terminate when the loop-counter has
reached a predefined l im i t , and a ca l l to the exception handler is
done.

Exception handler.

An exception handler must be defined by the user. I t has a one
byte input parameter. The scheduler calls the exception handler
whenever an error or inconsistency is found. Al l exceptions from the
scheduler are crash-exceptions, meaning that a new restar t wi l l be
done from a watch-dog c i rcu i t . This is very dramatic, and is
allowed to be so because those errors wi l l show up "a t once" in a
real system. Besides: to make the system l ive through such an
exception would require a much more complicated scheduler exception
handler. I t should not only be able to recover, but do i t
correct ly !

The error messages are l is ted at the end of this paper.

Some specific error s i tuat ions.

The scheduler does not allow a single process to run for more than
512 mS. This wi l l cause a crash-exception. This is a useful feature
to track eternal loops in a process.

Likewise, a crash-exception wi l l be the result if the processor does
not enter the idle state at least once within a 5 12 mS per iod.
This defines an overloaded system that obviously needs a rethinking
of the design of one or more processes.

RX51 scheduler. Page 5

The first system timer interrupt.

When06the f i rs t timer 0 interrupt is received after 2 mS, the timer
0 interrupt procedure decrements a l t non-zero wait counters. As
already mentioned, at this f i rs t timer 0 interrupt at least one
counter must hit zero. This wi l l cause a ca l l to the scheduler with
a boolean parameter te l l ing that i t is called because of an
in ter rupt . Inside the scheduler the return address to the interrupt
procedure is removed, and the stack pointer is decremented by two,
to modify the " c a l l " to a " g o t o " .

The scheduler now wi l l store (on the stack) the code address of
the f i rs t statement of the process to be run. The stack pointer is
increased by two to make i t possible to " return t o " the address
just stored on the stack. Since the scheduler was called from an
interrupt procedure this t ime, the two last instructions within the
scheduler is 1 .) to enable the global interrupt f lag and 2 .) the
" r e t i " (return from in ter rupt) inst ruct ion. After th i s , the f i r s t
running process is running i ts f i rs t statement.

The " r e t i " instruction is in fact run from an assembly code
procedure which is called by the scheduler. I t is called
" in ter rupt_re turn" and i t decrements the stack pointer by two,
enables the global interrupt f lag and then the " r e t i " instruct ion is
run. As within the scheduler, this technique is used to modify a
" c a l l " to a " g o t o " . PL/M-51 does not allow a goto to an
external label when the goto is not on the lowest s tack- leve l within
the compiled f i l e .

RX51 scheduler, Page 6

The anatomy of a process.

A process often consists of an ini t ial iz ing part and an eternal loop,

prcO :
DO;

process^O: PROCEDURE PUBLIC;
DECLARE <process__0 var iables>;

subroutine : PROCEDURE;
DECLARE <subroutine var iables>;

<subroutine (stack) level>
END subroutine;

<process ini t ia l iz ing part>
<process (stack) level>
DO WHILE 1 = 1 ;

<process eternal loop part>
<process (stack) level>

END;
END process_0 ;
<system l e v e l , no code in processes>

END p r c O „ ;

Later , "FOREVER" is used for "WHILE 1 = 1 " . The only f i le in the
system which has system level code, is the scheduler i t se l f . Thus
the linked system wi l l s tar t at that code part at power-up

Call to the scheduler (rx) .

Usually the ini t ia l iz ing part is run without calls to the scheduler.
However, because of the scheduling philosophy a l l processes must
contain at least one cal l to the scheduler. A ca l l to the scheduler
wi l l look like th is :

disable;
ca l l rx (next) ;

The parameter to the rx is a boolean having the value "next" or
" interrupt_received" . "Next" is used when called from process
l e v e l , " interrupt_received" is used when called from an interrupt
procedure.

RX51 scheduler. Page 7

In the example above the process suspends i t se l f . The process wi l l
stay in the suspended state un t i l an interrupt or mail in a mailbox
causes i t to be rescheduled.

If the process scans a keyboard every 10 mS, i t needs to be
rescheduled accordingly. The construct wi l l look like th is :

disable;
ca l l wait (10) ;
ca l l rx (next) ;

The process wi l l be rescheduled some time after 10 mS, or i t may
be rescheduled earlier if an interrupt or mail in a mailbox made i t
necessary. If the process needs to know if i t was rescheduled
because of a t ime-out , i t must check a boolean variable called
" t ime_bit" . This variable is actually located within the process
"psw" (program status word) . Thus every process has i ts own
" t ime^bi t " to check.

With the scheduling scheme described l a te r , the rx can be called
from process level or interrupt level on ly . I f the RX is cal led from
a subroutine that has been called from interrupt leve l or process
l e v e l , then an exception-crash is encountered.

RX51 scheduler. Page 8

Process s ta tes .

The diagram below shows the dif ferent states a process may posess.

I d l e R u n n i n g I I n t e r r u p t e d
. or w a i t (O) .
I (c o n t i n u e s ^
I l a t e r .) (*)

W a i t i n g f o r
m a i l w i t h o u t
t i m e o u t .

Ready t o r u n

I n i t W a i t i n g f o r
t i m e o u t .

i (W a i t i n g f o r
I (i n t . w i t h o u t
I (t i m e o u t

W a i t i n g f o r
m a i l w i t h
t i m e o u t .

W a i t i n g f o r |
i n t . w i t h |
t i m e o u t . I

M a i l b o x f i l l e d Sys tem t i m e r i n t e r r u p t I n t e r r u p t (

I n t e r r u p t or t i m e o u t t h a t was n o t w a i t e d f o r i s an e r r o r

(*) in this case " in ter rupted" means that the process has been
running at process level (not subroutine l e v e l) , and another
process has been rescheduled, leaving the " in te r rup ted" process
unaware of the fact that i t was suspended. I t must, of course,
continue la te r .

RX51 scheduler. Page 9

Accuracy of system timer and "call wait".

I f a system timer interrupt is l o s t , a crash-exception is
encountered. This is done by making the system timer overflow cause
the interrupt f lag to be se t , and le t t ing the system timer continue
counting. When the interrupt is served, the present value of the
system timer is checked. A too far counted value indicates that a
system timer interrupt has been l o s t . Actual ly , the interrupt has
not been lost y e t , but i t is already too late not to lose i t if
the interrupt is enabled again. This is considered a crash-exception
since i t means that the correct absolute time measure has been
l os t . I f , however, no timer interrupts has been l o s t , the timer is
preset to a value that wi l l make the next overflow appear exactly
2 mS after the previous timer overf low.

Since the system timer interrupt is run exactly 5 00 times every
second, i t may be used to count external variables that do not
belong to the scheduler. Thus, an "absolute time" measure is
avai lable. However, the scheduler does not use an "absolute time"
reference.

The "ca l l wait I nnn mS)" wi l l cause a process to be rescheduled
not at nnn mS sharp, but at some probabil ist ic time after the nnn
mS has passed. Therefore the " ca l l wait (nnn mS)" can be used
only as a coarse time measure, (nnn maximum is 25 5 mS) .

I f an "immediate" rescheduling is wanted, the " ca l l wait (0) "
construct may be used. This wi l l cause a l l the other processes to
be run (i f necessary) before the process that contains the " ca l l
wait (0) " is again rescheduled. The construct may also be
considered as a "signal to i t se l f " ,

Scheduling po l icy .

Some detai ls about the scheduling scheme have already been
disclosed. Since the scheduler can handle up to 8 concurrent
processes, the scheduler uses some 8 -b i t variables to determine
which process to run. The scheduler checks and modifies these
variables:

1 . process_int_received.
2 . process^timeout.
3 . process_mail_present.
4 . process_continues_later.

RX51 scheduler. Page 10

I f no process needs to be rescheduled, the " i d l e " state is
entered.

I f an interrupt other than the timeout is signalled to a process,
(process_int_reeeived) , i t wi l l be rescheduled if i ts process number
is less than the process number of the running process. With 4
active processes they are numbered from 0 to 3 , with process 0
given the highest p r i o r i t y . In a l l other scheduling cases, a round-
robin scheduling policy is used.

However, a s/ery important assumption has been made. A running
process always continues to run if i t has called a subroutine, no
other process wi l l be rescheduled. (The called procedure is named
a subroutine here to emphasize that i t is a user program called
from process stack l e v e l , or from another subroutine stack leve l) .

The assumption, then, is that the running process is making a ca l l
to the scheduler within a time frame that wi l l give acceptable
system response time. With the system described this has been no
problem. The processor is running at 12 MHz (maximum is 16 MHz),
and even with the code written in high- level language, the speed
penalty involved is quite acceptable.

This scheduling scheme prohibits the implementation of a process
t ime-slice mechanism. This l imitat ion has not proved to be s ign i f i
cant to the system behaviour.

With the scheme described, the process scheduler did not turn out
to be excessively complex.

RX51 scheduler, Page 11

Pseudo reentrant subroutines.

The consequence of the scheduling philosophy is that a l l subroutines
called from process level wi l l look reentrant , even if they actually
are no t , In other words, a subroutine that is called from one
process may be called from any other process as we l l . The only
drawback to this is the fact that input and output parameters to
the subroutine must be protected. This is easily done by call ing
the subroutine from another subroutine that handles the parameters,
Observe that interrupts need not be disabled during any phase.

Shared ram for pseudo reentrant subroutines.

An advantage with the pseudo reentrant subroutines is that their
local variables may be overlapped. When subroutines within the same
f i le are linked (by the In te l RL l inker) and their variables are
assigned physical addresses, the variables wi l l be overlapped
provided the subroutines do not ca l l each other. With the pseudo
reentrant subroutines this may be done also with variables within
subroutines that are separately compiled. The disadvantages are
that this must be done by hand, and that i t decreases some of the
high-levelness experienced without i t . However, i t may save ram,
and may actually also increase the high-levelness by making the
user able to build the system out of more and thus smaller program
f i l es . The same restr ict ions apply to this as the compiler/ l inker
must obey: special care must be taken if the subroutines ca l l each
other.

In the system described an array of 10 bytes is used for these
local variables. The array is declared public in one f i l e , external
in the subroutine f i l e . Then, the local variables are declared as
<variable name> at (.share^ram (n)) , where share_ram is the
public shared ram.

•

RX51 scheduler. Page 12

Stack need.

PL/M-51 uses the stack s t r i c t l y to push and pop return addresses
during a cal l to and return from a subroutine. The architecture of
the 8051 processors defines the stack to be on-ch ip . I t is
addressed re lat ive to the stack pointer , but i t resides within the
1 2 8 - or 2 5 6 - bytes on-chip ram. (The same ram may be accessed
relat ive to the R0- or R 1 - registers as w e l t) . Within a real- t ime
system a scheduler usually takes care of the administration of the
stack, i t takes care that each process has i ts own stack. This
administration is not necessary with the scheme described in this
paper. A process is rescheduled only when the stack pointer is "a t
the bottom" . I t is not the sum of the processes stack area that is
the t o t a l amount of stack needed. Thus the necessary ram area used
for stack is equal to the need of only one of the processes,
namely the process with the maximum need.

Semaphores not necessary to protect buffers.

In a real- t ime system, i t is necessary that only one process at a
time is granted contro l of a shared resource. This is usually done
with a semaphore or a specific freepool-semaphore. The processes
have to reserve the semaphore, then use the buf fer , then free the
semaphore again. With the scheduling scheme described in this paper,
the protect ion mechanism is impl ic i t .

I f the buffer that needs to be protected is modified at subroutine
level , then i t is pro tec ted, since the scheduler in this case wi l l
not reschedule any other process, but handle interrupts on ly .

RX51 scheduler. ^ ^ ^ ^ ^ ^ ^ ^ Page 13

Process synchronization: the mailbox pr imi t ive.

The scheduler administrates two arrays of bytes:

mailbox (no_of_mailboxes) byte ida ta ,
mailbox_owner (no__of_mailboxes) byte ida ta ;

A mailbox may be owned by a process, then the mailbox_owner is
equal to the process number of the owner. Or the mailbox may be
empty, then the mailbox_owner is the successor of the last process
number (= 4 when 4 processes, since the processes are numbered
0 - 3) .

The process that is waiting for a mailbox must use these two
function ca l ls :

Mailbox_reserved
Mailbox_emptied

The process that sends information to the waiting process must use
this function c a l l :

Mailbox_fil led

Actual ly , the sender does not send the mail to a known process,
but to a mailbox. The sender does not know which process is waiting
for mail in the mailbox.

The scheduler does administrate the mailbox synchronization, but not
when a process may get a mailbox reserved. I t uses a " s e l f -
administration" scheme where a process spins around waiting for the
resource i t needs un t i l the resource is received.

This spinning around may be realized with a loop with no
" ca l l wait (nnn) ; ca l l rx (n e x t) " inside the loop . This wi l l lock
out lower pr ior i t ized processes. Therefore i t is not a good
so lu t ion . (The scheduler wi l l issue a crash exception after 512 mS
anyhow: error_singe_process_running or error_idle_never_running) ,

The process should instead do a sampling of the resource within the
context of the scheduler: that i s , insert a " ca l l wait . . " within
the loop. This is shown in a l l the examples in this paper.
Remember that the time in terva l is rather f as t : 2 mS in the realized
system. I t is not the usual 5 0 mS counter realized in other r e a l
time schedulers, in such a case the solut ion would have been
prohib i t ive.

RX51 scheduler. Page 14

Process n: this is the process that is being signalled t o :
DO FOREVER

disable;
Performs a wait for the mailbox:
DO WHILE not Mailbox_reserved (b o x _ 0) ;

ca l l wait (2) ;
ca l l rx (next) ;
disable;

END;
cal l wait (t imeout^counter) (opt iona l)
cal l rx (next) ;
Sleep here un t i l wakeup.

wakeup done.

disable;
IF Mailbox^emptied (box_0 , .mail) THEN

mail received because another process has sent mail via the
"Mailbox f i l l e d " funct ion.

ELSE
DO;

IF time_bit = timeout THEN
timeout because no other process has sent mail within
the legal time interval (^timeout counter millisecond)

ELSE
interrupt received. I t is actually not necessary to wait
for an interrupt via a mailbox.

END;
time_bit = fa l se ;

Process the mail.
During this phase the mail named box 0 is empty and any other
process may signal to i t .

END;

The scheduler checks the previously mentioned process_mail_received
8 bi t va lue, and reschedules the waiting process whenever needed.

This may look "messy", but if used uncorrect ly, usually some lock
occurs that causes a crash exception. So i t has not proven to be a
" low-qua l i t y " construct.

RX51 scheduler. Page 15

The sending process may look like this:

Process m (any process except process n) . The process is signalling.
DO FOREVER

Process data and make it ready to be mail.

disable;
Performs a f i l l i ng of the mailbox:
DO WHILE not Mailbox ̂ f i l l ed (box_0, ma i l) ;

ca l l wait (2) ;
ca l l rx (next) ;
disable;

END;
enable;

The mailbox has been f i l l e d .
Continue any other processing.

END;

The "disable" statement turns off the interrupts during the "c r i t i ca l
region" phase. This wi l l prevent dead-lock from occuring if two
processes enter the cr i t i ca l region. The f i r s t process to run the
"disable" wi l l be the one to get any unused resource.

The "mai l" is declared as a byte that is public within the
scheduler. Any other mail type may be defined. However, in that
case the 3 " M a i l b o x . . " - functions must be sl ight ly modified.

RX51 scheduler. Page 16

Use of registers and register banks.

Al l the processes and subroutines wi l l use the register bank 0 , in
addresses 0 to 7 . No other register banks are used. The registers
within a register bank are denoted RO - R7. The scheduler stores
RO, R 1 , R6 and R7 for every process. Use of R2 - R5 at process
level is considered a cr i t ica l region that must be protected by a
"disable - enable" sect ion. This is necessary since these registers
are not stored when changing running process. However, since
processes are not rescheduled at subroutine l e v e l , a l l the registers
RO - R7 may be used at that l e ve l .

The reason for not storing R2 - R5 is that the PL/M-5 1 compiled
code seldom uses them. To make sure, the "$ code" compiler
directive may be used. Then tex t -ed i to r searches for "R4" e tc . may
be done. This should eventually be done on a l l the f i les in the
system, to acquire as high a quali ty as possible.

Exclusive process environment.

Each running process must have an environment that is exclusive to
that part icular process every time i t is running. The following
environment is exclusive to each process:

1 . b - reg is ter , 1 byte
2. accumulator, 1 byte
3. program status word or psw, 1 byte
4. RO, R1, R6, R7, 4 bytes
5. data pointer high and low, 2 bytes
6 . program counter high and low (pch, pel) 2 bytes

This to ta ls to 11 bytes. This may be changed if another def in i t ion
of a cr i t ica l region is done or another scheduling philosophy is
chosen. The scheme shown is chosen as something between the ideal
which is to give each process a l l the above plus R2 - R5, and the
existent ial ly minimum which is the program counter high and low.

RX51 scheduler. Page 17

Interrupts.

The PL/M- fac i l i ty " in terrupt n using register bank number" may be
used, since interrupts are not routed direct ly to the scheduler.
However, if one wishes to use the register bank 0 , a scheme is
provided within the scheduler f i le to show how i t may be done. Here
is an example of how an interrupt serving the serial channel is
done:

interrupt_serial_channel: PROCEDURE PUBLIC;

copy__of_RO_in_process
copy_of_acc_in_process
copy_of_psw_in_pro'cess

= process_and_rx_RO ;
= ace;
= psw;

IF Interrupt__function = signal_to_process THEN
DO;

int_to_process = int_to_processO;
int_mask = int_to_processQ_mask;
es = 0 ; / * processO may not immediately run * /
call__no_return rx (input_rx_int_received) ;

END;
ELSE
DO;

process_and_rx_RO = copy_of_RQ_in_process;
ace = copy_of_acc_in_process;
psw = copy_of__psw_in_process;
call_no_return in ter rupt_re turn ;

END;

END interrupt_serial_channel;

The Interrupt_funct ion is a function ca l l to the actual interrupt
procedure. I f the function value returned is equal to
signal_to_process then the serial channel process (process_0) is
" s igna l l ed " . If no t , a return from interrupt is done immediately.
"Cal l_no_return" simply means " c a l l " .

RX51 scheduler. _ _ _ _ _ _ _ ^ Page 18

Whenever the scheduler reschedules a process waiting for an
interrupt i t manipulates the processor interrupt enable register i e .
Each process has i ts own mask that is used to zero the necessary
bits in the ie - reg is te r . In other words: the interrupt level that
causes the process to be rescheduled wi l l have i ts interrupt enable
f lag disabled while the process is running. In the example above
the "es" f lag is set to zero, so the scheduler does not need to
reset i t to zero a second time. However, if the interrupt was
waited for with a t imeout, i t is quite necessary to disable the
corresponding in te r rup t , since interrupt to running is considered a
crash exception.

The interrupt pr ior i ty register ip is set to a l l zeros. This implies
the following scheme: whenever two interrupts are pending at the
same t ime, the external interrupt 0 has the highest p r i o r i t y , and
no interrupt routine can interrupt another.

The interrupt pr ior i ty register ip may also have non-zero b i t s . See
below in the "Assembly f i le and in terrupts" chapter.

Assembly f i l e .

With this scheme, the interrupt vectors are provided within a small
assembly-code f i l e . This f i le contains the interrupt vectors with
jumps to the defined interrupt procedures. In the example above,
at the address 23H is a jump to " interrupt_serial_channel" .

The assembly code f i le also contains the earlier mentioned
"interrupt__return" procedure.

Assembly f i le and interrupts.

When one interrupt may interrupt another in te r rup t , i t is called
"mul t i level i n t e r rup t " . Within the context of the RX, mult i level
interrupts are not al lowed.

However, the RX allows dif ferent bits in the ip- reg is ter to be set
to 1 . In the f i le assembly- f i le, the f i rs t instruct ion of every
interrupt routine is "d isable" or clr 0A8H.7 . This allows for
dif ferent pr ior i ty leve ls , but s t i l l mult i level interrupts are
avoided.

I J

RX51 scheduler. Page 19

The idle program and the watchdog.

Whenever a l l processes are emptied, the scheduler returns to a
procedure called " i d l e " . Here, the processor is in fact put into
the " i d l e " s ta te . This wilt cause the "ALE" pin to go continually
high. A f i l t e r and di f ferent iat ion circuit tr iggers whenever the idle
state is l e f t . I f idle is not entered within 1 second, or if idle
lasts for 1 second, the RESET input is pul led high. The functioning
of the scheduler does not depend on this implementation of the
watchdog, even if the idle state must be visi ted regular ly .

Debugging processes.

I f a high- level debugger is avai lable, the line numbers and
variables of the scheduler are d irect ly avai lable. Almost a l t that is
needed is the "running" by te , te l l ing which process is running, and
the restart addresses of the dif ferent processes. Then i t is
possible to concentrate on the di f ferent processes and " fo rge t " the
scheduler.

Error messages.

Some fingerprints of the system often show up in the error
messages. These values are input parameters to the exception
handler. Al l messages cause crash-exceptions:

error_call_to_rx__level
error_interrupt_to_running
error_no_timebase
error_process_reg_bank
error_single_process_running
error__stack_overflow
error__timeout_overflow
error_timeout_to_running
error_t imer_interrupt_lost
error_idle__never_running
error_disable_missing
error no mailbox

cal l rx not from process or interrupt
enable/disable used incorrect ly
did not s tar t at power-up
not register bank 0
stuck in loop
less than power-up value
wait timeout already done
wait used incorrectly
disable too long
processes too busy
forgot disable
not declared

I i

RX51 scheduler. Page 20

Availability of the scheduler.

This paper describes a real- t ime scheduler and i ts basic ideas.
Autronica is using the scheduler in a new hardware product. The
scheduler i tse l f is not a product that Autronica wi l l market
commercially.

Acknowledgments.

I must thank professor Odd Pettersen of NTH, Trondheim for reading
and commenting on this paper. Also, Skogstad and Soll i at Autronica
have read this paper and the source code cautiously. Ellingsen at
Autronica has implemented the scheduler in another soon to be
released product, and given many valuable comments.

